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Abstract—We propose a method to adaptively denoise sensor these challenges. Results and discussions are given iiSect
data streams corrupted by noise that can be approximated as |V and concluding remarks in Section V.
additive white Gaussian. This on-line filtering method is based
on the Monte-Carlo Stein’s Unbiased Risk Estimate (MC-SURE) 1. CONCEPTS ANDCHALLENGES

algorithm, which enables a blind optimization of the denoising . .
parameters for a wide class of filters. We first identify the  1he MC-SURE algorithm optimizes the (vector)-parameter

challenges that arise as the MC-SURE algorithm is adapted to A Of a continuous and (weakly) differentiable denoising func
on-line data processing. We then propose a framework to address tion f,(-). Consider the noisy data

these challenges and demonstrate the application of the algorithm

using real-world datasets. y=s+w Q)

comprised of a desired signale RV andw € RY, a zero-
mean AWGN with variance. The mapping

The increasing affordability of sensors is enabling cost- .
effective and real (or near-real) time monitoring of comple Sx= M) )

phenomena and systems such as fusion in tokamak reactyySne \-parametrized data filtering operation that produces
electric power grids, or large-scale infrastructure nekso 4 signal estimate of. The MC-SURE procedure finds the
The measurements obtained from multiple sensors monj;origptimm parameter for denoising by minimizing a proxy of
the phenomena or systems under consideration are analyggd mean-squared-error (MSE) criterion, namely, Sen’'s

to track their operating state or detect deviations fronmmalr |\ jpiased Risk Estimate (SURE) [2]. This SURE-statistic
behavior. However, the effectiveness of these analysie-algbstimatmg the MSE is expressible [1] as

rithms depends on the quality of the input data, that is,rthei . 02
S|gqal—to-n0|se power ratio. Since sensor data are thgI Thy) = —lly = &>+ Ldivy{fA(y)} — g2 ©)
subject to non-negligible measurement errors due to noise, N N
the data recorded must be filtered to remove most of thehere div,{f\(y)} denotes the divergence of the denoising
noise while preserving the important waveform informatiorfunction with respect to the data. The MSE-based optimal de-
Though there exist a host of denoising algorithms, most ate moising parametek* is thus the minimizer of the SURE-curve
inherently designed for real (or near-real) time data pset®y {7)(y) : A € RX}. Fig. 1 illustrates the automated denoising
as they often lack an automated mechanism for selecting #fea data segment by a Gaussian filter whose parameter is
best parameter values for denoising arbitrary measurem@méntified using the SURE curve, which, as shown, closely
sequences using the prescribed filter. approximates the MSE curve. For filters which do not have
We develop a simple and practical method for on-lina closed-form expression for the divergence term in Eqnatio
denoising of sensor data streams with arbitrary wavefor8) we can use a Monte-Carlo approach to estimate this term
characteristics by using the Monte-Ca8iein’s Unbiased Risk  [1], thus providing us additional options in the selectidnao
Estimate (MC-SURE) algorithm [1]. This approach enables aoise-removal filter.
blind optimization of the regularization parameters of alevi The MC-SURE procedure is particularly well-suited to on-
class of filters that seek to recover an arbitrary signaligaed line data denoising as it produces thest filter parameter
by additive white Gaussian noise (AWGN). The MC-SURHvithout any assumption about the underlying signal. Howeve
formulation is particularly suited for streaming data €nit the application of the algorithm to streaming data presents
produces the optimal denoising parameter (defined using #®me practical challenges. If we use a block-based approach
mean-squared-error) for a chosen filter without any assiompt the need to minimize latency dictates that data blocks being
about the underlying noise-free signal. processed must each have a limited number of observations.
In this paper, we describe a strategy for adapting the MThis introduces some performance issues as discussed in the
SURE algorithm to streaming data. First, in Section Il, w#llowing:
describe the algorithm and discuss issues associated twith i Noise estimation errors: The SURE-statistic formula from
on-line implementation. Section Ill describes how we adglreEquation 3 assumes the noise variamcés known exactly.

I. INTRODUCTION
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(a) The SURE-curve approximates the MSE-curve and * \values
is thus used as a proxy for finding the parameXér

that minimizes the MSE. Fig. 2: SURE-curves for two groups of data segments: 20

length-25 data segments and 20 length-300 data segments

a Monte-Carlo (MC) approach: first, generdterealizations
{b;}¥_, of a length# random vectorb and then compute
the k-MC-run divergence estimate
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divy {f5,3)} = > b (A, +bi) = f,),  (6)
(b) The data and the estimated signal obtained by € i=1

filtering the data with the Gaussian filter with parameter . . . .
A=\ which amounts to averaging single-MC-run divergence es-

timates. If N is large, a single MC-run suffices to generate
a reliable estimate of divergence. However, as shown in Fig.
3, the estimation error increases rapidly with decreasihg
Thus, whenN is relatively small, as would be the case in
Bhline block-based data processing, the estimates fromgéesi

un are unreliable as shown in Fig. 4. In such situations, an
%%propriate number;, of MC-runs must be found on-the-fly
to reliably compute the divergence-term for each data segme

Fig. 1: lllustration of the MC-SURE procedure.

However, it has to be estimated in practice. In [1], Rama
et al. replaceos by its estimate computed using the Donoh
median estimator method [3]. This approximates the noi
standard deviation of a lengtN-datasey by 6 = M, /0.6745
where My, is the median of theV/2 wavelet coefficients at
the finest scale. As the analysis in [1] was done on images

with synthetically added AWGN, it is reasonable to subsgitut 0207 —

—— N =600

o by ¢ because the noise is exactly white Gaussian and the Do)

—— N - 4800

numberN of observations is very large (N 2562) However,

in streaming/online data processing settings, the sizedzfta
block will be relatively small. As a result, errors in estitima

the noise term could be significant, leading to unreliable
SURE-curves. For example, the length-segments in Fig.

2 are from the same periodic signal and thus have the same
frequency content in principle. WheN is equal to 25, more
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substantial discrepancies are observed between SURESURg 3: variance of the error in estimating the divergenaeve
as compared to the case wheke equal 300. This can be ¢, yifferent values of the data siz.

attributed to the increased variance in estimating theenas
N gets smaller.

Errors in divergence-term computation: Given a length-
N data segmeng and a set of candidate denoising parameter
values{)\; : j = 1,2,...,J}, the reliability of the computed
SURE-statisticsl'y,; (y) also depends on the accuracy of the
computed divergence term gi{fy, (y)}. The divergence can
be expressed as '

divy {£3,(¥)} = lim Ex{b"(f5,(y +b) = f,(¥))},  (4)

Divergence-value

S

Sk Liai,
o 3
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ingle MC-run estimate [ = 301]
ce cun

whereb is a zero-mean i.i.d. random vector with covariancE!d- 4: Comparison of the divergence-curve with sTgIe-MC-
€21, and By, {-} denotes expectation with respectioWhen a run estimate when the data size is relatively lai:= 300
proper value ofe is chosen, diy{f\,(y)} is estimated using samples.



Input stream

to the effect of the small length of a data segment on th Past observed data blocks Current data block
calculation of the noise and divergence estimates, our ritime
cal experiments suggested that the MC-SURE procedure fails

to return an appropriate denoising parameter for data with a

Detrimental effects of strong DC componentsin addition

strong DC-component. This issue is independent of the tengt sb-aigns

of the data block under consideration. Fig. 5 illustrates th Previous signal estimate

point. The data segments and zp are identical except for %NWWM{W\/»WWW""-\f\mw\ﬂwmv/\/\/\,/W‘
the presence of a strong DC-componesy: = D + z, where ——————————— Merging using weighting window:

D is a constant vector. The application of the MC-SURE Current signal estimate

algorithm toz produces the SURE-curve in Fig. 5a, which Mﬂwww\/\MWwWw,.ww\{VNV\/WWVW
reports the optimal filter parameter value of = 2. We expect m_]
that a similar denoising parameter value should be neogessar
for zp, but the corresponding SURE-curve, shown in Fig. 5lbig. 6: Schematic representation of the block-based, ro#-li
erroneously reports that no denoising is needgd< 0). In data de-noising framework using the MC-SURE algorithm.
general, when the data under consideration have a verygstron

DC component, the MC-SURE algorithm appears to always

report that no denoising is needed, regardless of the amo(nt, ...} is denoised one at a time. The noise in tHé data

of noise present. block y; is filtered out using the prescribed filtgh (-) with
parameterA set to \7, the best MC-SURE-based parameter
value. Thei-th data block outputs; = fA; (yi), is the sub-
signal ofs contained iny;. The estimate of the portion af
that is available after processing the+l)-th data blockyr. 1

is denoted bysZtY, This current signal estimat&”*+!) is
formed by stitching together the available sub-signahestes:
{S0,81,82,...,87+1}. This is done recursively via

008 sTH) =D o WD £ 871 0 Wry, (6)

Output strea
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wheresZt1) is new signal-estimate constructed by properly
(2) SURE-curve ot merging via tapered windows the newly obtained sub-signal
estimatess,; with the previous signal-estimate?). The
operator © denotes element-by-element multiplication. The
termsw @) andWz_, denote here one-sided cosine tapering
windows although other types of tapering windows are also an
option. The recursive procedure is initialized wikf?) = §.
This data processing strategy is illustrated in Fig. 6. s t
system to be effective in denoising streaming data, ind&id
data blocks must be properly denoised using the MC-SURE
a0 " in spite of their relatively short lengths or the presenc®Gf
(b) SURE-curve ofzp, (z plus DC-component) terms. We address the issues identified in Section Il as/Wstlo
) ) . Removal of DC components:To suppress the detrimental
Fig. 5: Comparison of the SURE-curves generated using tBﬁects of DC components on the performance of the MC-
datasetsz and zp. Although the two SURE-curves differ gyrE aigorithm, we first pass each data blggkthrough a
significantly,z andzp only differ by a DC-component term. . fiiter centered at the DC-frequency. A data block auth
a DC-component will be indifferent to this pre-filtering. Fo
simplicity, we may assume hereon that each data block is free
of a DC-component as it would have been removed at this
stage, if present.

Consider a sensor data stregm= {y, : n = 0,1,...} Noise estimation: We previously noted that estimating
comprised of a desired signal= {s, : n = 0,1,...} plus the noise termv using only the limited nhumber of samples
AWGN. The model assumes that the noise parameter varfeam a data blocky; produces an inaccurate estimate which
as time elapses, albeit very slowly. Samples frprare taken deteriorates the accuracy of the computed SURE-curve. We
in as successive data blocks of sizes which are appropriataiitigate the problem by combining observations from a chose
chosen. The-th data block is denoted by; = {y, : N; < number of consecutive data blocks to generate a betterastim
n < M;}, whereN,.; = M,;— L andL is the overlap between of o. Since noise characteristics are expected to change slowly
consecutive data blocks. The stream of data bldgks: « = with time, it is reasonable to assume that the noise obsenst
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Ill. A PRACTICAL STRATEGY FORDENOISING SENSOR
DATA STREAMS



from M consecutive data blocks come from i.i.d. Gaussian .
distributions with parameter. The Donoho median estimator
produces a separate estimate ®offrom each of the M
previous data blocks. When processing the current data block

yz, the noise estimates from th& previous data blocks e
{67-M+1,07—M+2,-..,07} are combined to produce a more
reliable estimate of via

IT—M+1 ~
Zi:I Nio—i 7)Y =5 —0.02
ZIiM{Fl N, ( ) 005 100 Nuzmber e of MG s 100 500
=T 2

or =

where N, denotes the length of théth data block. The Fig. 7: lllustration of the profile of the sequencé’,q which is

weighted averaging takes into consideration the unequal rsed to track the convergence of the divergence-curve atgim

liabilities of individual noise estimates and gives mordghé

to those from longer data blocks as they are expected to be

more reliable. sizes of windows must be bounded above. At #héh data
Divergence-curve computation:For the grid of parameter- block, the computed data scales for the |[Rstlata blocks are

values{); : j = 1,2,...,J}, the divergence-curve estimated{Az_p41,Az_py2,...,Az}. The sizeNz, of the (Z+1)-th

via Equation 5 using: MC runs is denoted by data block is determined via

AP = AV (vl G = 1,2 ©®  Nzoo=min {Noeo 6 max {{A} 7, )} A1)

where 0 is a multiplicative factor andVnyax is the maximal

For a fixedj, {d§’“) ck=1,2,...} is a converging s:equencedata block size.

of estimates of diy{ f», }. Thej-th element of the divergence-

curve is thus estimated b;éKﬂ) with the number of MC-runs V. RESULTS AND DISCUSSIONS
Kj chosen such that We tested the denoising strategy using both synthetic and
‘d(_KjH) _d(_Kj)l real datasets. Sample results and implementation steps are
rif9) = 2 iy 3, (9) illustrated here with a real-world dataset: a sequence litle
|d;™ —d;| body acceleration response measurements. Table | gives the

parameter values used in the implementation. We observed

where § is the convergence stopping criterion. SeekiR(
g Pping g &as noted in [1]) that MC-SURE is very robust to variations

for each of theJ divergence-values may be impractical: Th h : & which h ¢ "2 with
convergence rate o{rék) k= 1,2,...} differs from one In the value ofe, which can change frora to 10~ without

j-index to another. Thus, instances might occur where, fgjscemible changes in performance. Since no previousatata
one or a fewj-indexes, an unreasonably large number c5’:}vailable to systematically decide the initial data blotes

runs is needed to satisfy Equation 9. A group convergenEe’S chosen sqqal éOMm_aX' Tlhle SIZes ?lf slubsequefnthblocksl
requirement is then used to avoid such situations: for %l;e computed via Equation using the largest of the scales

parameter values;, the divergence-value is estimateddéff ) the two blocks preceding them (i.%, = 2).
with the number of MC-runs choseli such that

1 TABLE I: Values used for the algorithm parameters.
K) _ (K)
rf = i Z Ty < d. (10) Parameter Chosen value]
j=1 Standard deviation of probing noise: 0.0002
. & Maximum allowed segment Sizé&Vmax 500

The k-indexed sequence! >kgoes from one to zero as the Fixed overlap between segments: 30
divergence-curve estimat{asl§. ) :j=1,2,...,J} converges Mulgplicati\]{e factglriek 24

; i ; : Number P of past blocks 2
with additional MC runs. Fig. 7 shows an example profile for Number 37 of past blocks z

r(¥), where the choice of = 0.02 leads to the termination of
the divergence-curve estimation aft€r= 67 MC simulations.
Online selection of data block size:To avoid potential  Table Il gives the noise statistics and denoising parammeter
spatial aliasing issues in the processing of the streamiogmputed for 20 consecutive data blocks. The parameter
data segments, we select the sizes of data blocks basedd as noise term for theth data block, is the weighted av-
on waveform structure information computed from the datarage of the individual block noise estimates from the esi
We use techniques from scale-space theory [7] to identifiye data blocks (i.e.)/ = 5). The denoising parameter; is
the typical length (e.g., scale) of the most salient signdie standard deviation of the Gaussian filter as determiyed b
structures in a dataset. By choosing the size of the neke MC-SURE algorithm. Sample results from our denoising
block sufficiently larger than the data scale, we ensure thettategy are shown in Fig. 8. These results support the geemi
enough samples are taken to avoid potential spatial afjasiat it is possible to automatically select the parametersaf
issues. Since processing latency has to remain minimal, thenoising algorithm to process streaming data.



TABLE II: Computed statistics/parameters for 20 segments.

Data block || Scale | Length i i AF
1 12 1000 | 0.0396 | 0.0396 | 3.75
2 12 244 0.0553 | 0.0427 | 4.25
3 15 244 0.0480] 0.0435| 7.0
4 19 360 0.0357] 0.0420| 5.0
5 13 456 0.0398 | 0.0416 | 3.25
6 13 456 0.0464 | 0.0440| 4.25
7 11 312 0.0405] 0.0419| 3.25
8 15 312 0.0527 ] 0.0429| 3.25
9 12 360 0.0476 | 0.0451| 3.75
10 13 360 0.0381] 0.0451 | 3.25
11 31 312 0.0323 ] 0.0423| 3.75
12 13 500 0.0368 | 0.0411| 2.75
13 14 500 0.0322] 0.0372| 3.0
14 13 336 0.0382 | 0.0355| 3.5
15 13 336 0.0393 | 0.0357 | 3.5
16 15 312 0.0381| 0.0366 | 1.0
17 13 360 0.0486 | 0.0388 | 0.75
18 11 360 0.0590 | 0.0450| 0.5
19 12 312 0.0554 | 0.0483 | 3.75
20 14 288 0.0650 | 0.0533| 0.5

V. CONCLUSION
We proposed a practical strategy to automatically denoise

streaming data that have been corrupted by (approximately)
Gaussian noise. First, we recognized that the MC-SURE
algorithm is well-suited to denoise sensor data streantsesin
it prescribes a procedure for optimizing the regularizatio
parameters of a wide class of denoising filters without any
assumption about the underlying signal of interest. Second
we identified and addressed the challenges in extending the
MC-SURE algorithm to streaming data. Results from our
tests on real datasets that reasonably fit the data model sho
good denoising performance. Future research directiongdvo
include a comparison of our approach with other methods for
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\ﬁig. 8: lllustration of denoising with the Gaussian filter.
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sample-based approach to further reduce the latency.
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